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Using the method proposed in fl] we determine the long-wave asymptotic behavior of 

the coefficients of reflection and transmission of a plane wave incident on a grid placed 

at the interface of two media. We prove that this asymptotic behavior is fully expressed 

by the apparent mass of the grid. 

Let us have a %c-periodic grid placed in the plane zy along the axis y. The elements 

of the grid are convex domains with two mutually ~r~ndicular axes of symme~, one 

of them being axis k. We shall denote by D the domain outside the grid, by D* that 

part of D which lies in half-plane t > 0, and by D- that part of D which corresponds 

Fig. 1 

the Helmholtz equation 

the homogeneous Neumann 4 

to z < 0 (see Fig. 1). 
Let us also assume that a plane wave 

p0 = e- ik1(Jr,x-i%lI) 
, c112+p1~= i, kl=o/cz 

incident on the grid, arrives from the right-hand 

side (Z > 0) , In the above equation kr is the 

wave number, o is the frequency of incident 

field, cr is the wave velocity, and a1 and fir are 

the cosines defining the propagation direction 

of the wave. 

We shall consider a fine grid&e. period 2c 

of the grid is taken to be many times smaller 
than ,4,/o (1 k, 1 < n/Zc). 

The problem of diffraction of PO on this grid 

consists in finding a function P(x, y; k), regular 

with respect to k for 1 k 1 < n / 2 c and, in the 

domain D, satisfying : 

(A + F) P = 0 
condition at the grid boundary +t 

the condition of quasi-periodicity in domain D 

P(z,r/) = P(x,y - 2c)e 2fFiCB 

the decay condition formulated by Maliuzhinets n] 

s”pD 1 (p -Po)e-rkOuI<co for Imk>jRekj 

the conditions on L (the totality of the y-axis sections located in D) 

(4) 

PI = Pz (continuity of pressure on L) 
(5) 

$- 2 = + yi (continuity of velocity on L) 
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Constants p1 and pn are characteristics of densities of the media in domains D+ and 

D'. Symbol n denotes a normal to y and is inside D, and 

P = 

1 

PI (z, Y; k) (t, Y) E D+ = o/cl (r, ~1 E D+ 

Pa (2, Y; k) (z, Y) E D- k=(::=w/c, (a$), D- 
t 

P= (; ;;;;z;_ 
( 

a1 
a= 

(t, Y) E D+ 

a$ (2, Y) E D- 

where ca is the wave propagation velocity in LI-. 

Let us note that conditions (3) and (4) ensure the uniqueness of solution of the diffrac- 

tion problem formulated in (l)-(5). 
bet us determine the asymptotic behavior of P when 1 z I-+ 00 and 1 k 1 < (a / 2 c). 

With this purpose in mind, let us first point out that by virtue of (3), the functionPe-‘ka” 

must be periodic with a period ZC, so that the following expression is valid: 

P = ,*ka” 2 C,(t) exp + (6) 
m<n<m 

Substituting this series into (l), we obtain an ordinary differential equation for each 

of the functions C,(S) dzC,, / d+* - [(nn / c)&,]*C,, = 0 

where 
(nn/c)1L,,= ~[(nn/c)+k~J~-k2 (n=O,~I~i,ztt,...) 

the function Jw (I n 1 > 0) is determined in the plane of complex variable with a 

cut along the ray ReI.,a < 0, ImA.,a = 0. and assumes the value vc = i when k = 0. 

Straight calculation yields the following inequality : 

Re A,, > 0 for I n I > 0, I k I < (n / 24 

which allowing for (4), makes it possible to transform (6) as follows : 

pt-Ww = &kax + Qkm + 

Taking now into account that for 1 k I< (II / 2 e) and I n I > !I 

we find that 

On the basis of the above, we shall seek the functions PI and Pa in the following form 

respectively : 
P1= _ p#lPlY Ie -iklalX + V(kr, al, PI) efkklatx + u (2. SI; kt)] (7) 

P ¶= - p&krprV [W (kt, aa, /3,) G-‘~*~~ + v (t, y; k,)] 

Here U, v, V and W are interrelated by the follow’ing equations: 
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f 2ik& -& + klw 
> 

rb = 0 (2, Y) E D+ 

+ 2hih 6 + kw) v = o (z, y) E D- (8) 

(r+ is that part of r which corresponds to t >O) (9) 

2 f i/c&& g v [ r_ = ikpctajV,-ik:afi g - ik.$l~~-~k~aIX -$ ] 
Y- W) 

<Y-is that part of y which corresponds to 2 < 0) 

U = Ofeex) for 2 -+ m, v = O(e”“) for t + -00 (11) 

U(Z,Y - cf = +, II + c), u(z, r/ - c) = U(5, # + c) (12) 

PI(f + v + u) = Pz( w + 0) exp [i(ksflz - k,f),)yll (13) 

ikm (i - v) _ -$. = ihazW -g ~XP P (k& - kllw,Yl j L (14) 

(15) 

2chkacws f‘pr (i + V) - plW] = - ksz., 
s 

PI an 
+ 

ayl & - klcil 5 I+,‘$ dl 06) 
To Ye- 

Here TO+ and ~0’ are parts of the boundary of one grid element in the strip 1 g I< c, 

and functions Or, @2, ‘yr and YS are determined by the following equations: 

@1= co9 (klalt) ewiklBru, (Ds = cos (k,a%t) e-ih’*BJy 

Y’1= sin (kelz) e-iklplY, ‘3’9 = sin (k&z) e-ikrpru (17) 

Equations (8), boundary conditions (9) and (lo), periodicity condition (U), and condi- 

tions (13) and (14) on L , can be all obtained by substituting P, and Pa from (7) into 

relations (l)-(5). 

To derive Eq, (lS), all that is needed is to apply twice the Green formula, respectively, 

for functions Pt and over the domain h+(Do+ is that part of D* which lies in the 
strip 1 fl[ <c) and for functions Pa and (Dp over the domain DO- (DO- is that part of 

D- which lies in the strip 1 y 1 < C) 

(LO is that part of L which corresponds to J y 1 < c) . 
Dividing now both sides of (18) by pr and both sides of (19) by PZ, adding the results 

and allowing for (5) and for 
k,B, = kz& (20) 

we finally obtain Eq. (15). 
Applying the Green formula for the functions PI and Y, over the domain D+o and for 

the functions PZ and Y2 over the domain D -o, we derive (16) in the same manner as(lS). 
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Since u and v are periodic functions, all further analysis can be confined to one inter- 

val only, for example DO = D+o VD-o. 

Expanding u, LJ, V and W into series with respect to k in the vicinity of k = 0 

5 

03 

u= ‘cpklp, v= 2 vpksp, V= 5 VpklP, W = 5 Wpk,P (21) 

p=1 p-1 P=o p=o 

and substituting (21) into (8)-(16). having first expanded all functions on the right-hand 
sides into power series with respect to k in the vicinity of k = 0, then gathering all 

terms containing the same power of k and equating their sum to 0, we obtain a recurrent 

sequence of boundary value problems for Laplace and Poisson equations. In this paper 

we shall only consider the first boundary value problem of this recurrent sequence, namely: 

Au, - 0, when(z, y) E D+o, Au, - 0, when (xl Y) E D-o (22) 

hll 

an y,+ I =ial(I-Vo)g-ipl(i+Vo)g + 
I Y* 

h 
an -f,- I 

= ia,Wog - iPaW 2 1 
IO- 

(3) 

(24) 

where 

ut = 0 (e+lcl “) for t -+ 00, vr = 0 (I&~/‘) ‘) for 2 -, - 00 

Ul(Z, c) = u&, - c), Ul(I, c) = +, - 4 

Pl v1+ 4 Ir, = Qh Wl + Vl) lLar 
au1 t an 

atr,= at& I 

t = fir / Ba = Cl / cz 

(25) 

(26) 

(27) 

Let us note that Eqs. (27) are derived from (13) and (14) with relation (20) and zero 

approximations of expressions (15) and (16) taken into account. These zero approxima- 

tions make it also possible to write out the explicit formulas for YO and Wo as follows : 

VO = z:FI I E:Ft , WO = alp2~~a,pl , as = 1 - $ “’ 
( ) 

It is now clear that V. and W. are the reflection and transmission coefficients, respec- 

tively, for the wave PO incident on the free (i. e. without grid) interface of the two media. 

First approximations of relations (15) and (16) yield the following set of equations for 

V, and WI : 2ic (alVl + fZa8Wl) = l/z [alz(i + Vo) + f2a22W01S t- @IPI + 432p2) 

2d(p,V, - tp2Wl) = - 1/2i~plal(i - Vd + twt WdS + PA + t&s (28) 

where S is the surface area of one grid element, pd is the length of La , and 

p1= an’p2= 
s 

u1 2, 
s 

vlgdl, AI= ulgdl, I.,= 

r.+ 
s 

ye- %+ 
s 

vlg dl 

rr- 

With a view to compute the above functionals, we shall investigate two functions, rp 
and $, periodic with a period of 2c and harmonic in Do , which satisfy the following 

conditions : 
acp a2 

an TO= ;i;; ye’ I I 

alp aY 
an = isi ya’ I 

70 = re+ u ro- 

~=O(~-“lxllc), ~=O((~-~l~l~~) for Izl+m 

From the Green formula for the functions 9 and ul over domain Do+, and for cp and 
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ZQ over domain DC , we find that 

The function cp is odd with respect to z and, therefore, is equal to 0 on LO . Adding 
the last two equations, with (23). (24) and (27) taken into account, we obtain the follow- 

ing relation: 

where X, is the coefficient of the apparent mass which, according to Sedov @], is deter- 

mined by the equality A,=- qgdl 
s 
ye 

In the derivation of (29) we have taken into account the symmetry of the grid with 
respect to z-and praxes. 

Similarly as before, we obtain the expression for the functionals PIat ps , 

i (b@~ + t*fh&f = - l/r PI* (1 + k’o + w,) li,, h, = - 
s 

I# 2 dl 

y. 

(Xl! 

Here &is the coefficient of the apparent mass @I. 

Let us now substitute (29) and (30) into (28) 

arvr + tZazWI = %t~-~((l + VO + W~)f$~l~ - Iulz(i + VO) + t2a22WdS] 

Plv, - &WI = - Vri~-~ ip,a,(l - VO) + lp2azWfW + &I 

From this, for cl > 0 and a1 # 0 we finally obtain 

VI = 4c (alPs ; *ag*) {Ps [(f + vo + Wo) P+/ - (alo (1 S’VO) t t'ao2Wo) 4 - 

-tfa2 [fwa(l- VO)+ tp2a2W0lP+ A,)1 

wx= 4et (,,pri+ talpl) (PI 10 + v. + Wa) pr*& - (or2 (if V0t + tzaOOW0) $I+ 

+ k [pial (1 - VO) + tfwhW0l (S + AtI} 

We have thus determined the asymptotic behavior of the sonic pressure field for a 
plane wave PO incident on a fine rigid grid ; its form is as follows : 

P1-- prPo-- pr [Vo + klVl_t O(lrl?)] r?f*,(alt+flll/) for x--,00, k1-,0 

POW-- ps [W. + kaWl + 0 (k*l)] e-ikr(a*X-BtY) for z-+00, k240 

Thus, when the apparent mass of the grid is known, we can compute the reflection and 
transmission coefficients of the grid. 

Finally, when the particular case of normal incidence of a plane wave on the grid is 
considered under the conditions pt = pa and c1 = ~2, we obtain results which are in 

agreement with those produced by Gurevich p]. 
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The problems of existence and of the upper bound of the velocity of propagation of sim- 
ple steady waves for the nonlinear wave equation which arises particularly in the analysis 

of signal transmission in an active RCL line are investigated. It is shown that simple 

steady waves do exist under certain conditions which the parameters of the nonlinear 

medium (the line parameters) must satisfy and that the velocity of propagation of these 

waves does not exceed a certain value which is strictly smaller than the limiting wave 

propagation velocity in the medium. 

The investigation of simple steady waves in nonlinear media associated either with 

the asymptotic transition of the system from one equilibrium state to another or with 
return to the initial state is of great practical importance. We need merely point to 

such physical phenomena as the propagation of a normal combustion front n], excitation 

in a neuristor line p], and a whole series of processes in distributed semiconductor sys- 

tems such as the Gunn effect [3]. 

Let us consider the nonlinear wave equation 

F8F 
’ "c-g]+[,-;z]$=Q(c) (Dtconat) (0 

where d is the limiting wave propagation velocity and Q(e) is the nonlinear “source”. 

As 8 4 00 Eq. (1) degenerates into the nonlinear diffusion equation 

& - D !? + Q (c) 
2f-- Lw 

As noted above, wave equation (1) can be arrived at by analyzing signal transmission 
in an active RCL transmission line described by a system of nonlinear telegraphic equa- 
tions for the form 

-s=Rj+L_!$, -$= C%$ J&J) (3) 

where R, C and L are, respectively, the resistance, capacitance, and inductance per 

unit length and J(q) is the nonlinear leakage current. System (3) defines the distribution 


